Abstract
Phosphorylation regulates protein function by modulating stereospecific interactions between protein-protein or enzyme-ligand. On the other hand, many bioinformatics studies have demonstrated that phosphorylation preferably occurs in intrinsically disordered regions (IDRs), which do not have any secondary and tertiary structures. Although studies have demonstrated that phosphorylation changes the phase behavior of IDRs, the mechanism, which is distinct from the "stereospecific" effect, had not been elucidated. Here, we describe how phosphorylation in IDRs regulates the protein function by modulating phase behavior. Mitotic phosphorylation in the IDRs of Ki-67 and NPM1 promotes or suppresses liquid-liquid phase separation, respectively, by altering the "charge blockiness" along the polypeptide chain. The phosphorylation-mediated regulation of liquid-liquid phase separation by enhancing or suppressing "charge blockiness," rather than by modulating stereospecific interactions, may provide one of the general mechanisms of protein regulation by posttranslational modifications and the role of multiple phosphorylations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.