Abstract

In this work, we review the physical properties of organic materials and transistors, discussing especially the charge transport mechanisms. Finally, we present an analytical and continuous charge model for Organic Thin Film Transistors (OTFTs) from which analytical expressions of all the total capacitances are obtained. They are developed and finally written as continuous explicit functions of the applied voltage, resulting in a complete charge-based small-signal model composed by a unified charge control model derived from Poisson equation assuming an exponential density of localized states. This charge model was developed from a previously proposed analytical DC current model assuming a hopping based transport. Therefore our complete small signal model has the potential to be successfully used in circuit simulators for the design of OTFTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.