Abstract

A novel chemoreceptive neuron MOS (C/spl nu/MOS) transistor with an extended floating-gate structure has been designed with several individual features that significantly facilitate system integration of chemical sensing. We have fabricated C/spl nu/MOS transistors with generic molecular receptive areas and have characterized them with various fluids. We use an insulating polymer layer to provide physical and electrical isolation for sample fluid delivery. Experimental results from these devices have demonstrated both high sensitivity via current differentiation and large dynamic range from threshold voltage shifts in sensing both polar and electrolytic liquids. We have established electrochemical models for both steady-state and transient analyses. Our preliminary measurement results have confirmed the basic design and operations of these devices, which show potential for developing silicon olfactory and gustatory units that are fully compatible with current CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.