Abstract
The nature of electronic states due to strong correlation and geometric frustration on the triangular lattice is investigated in connection to the unconventional insulating state of NaxCoO2 at x=0.5. We study an extended Hubbard model using a spatially unrestricted Gutzwiller approximation. We find a new class of charge and spin ordered states at x=1/3 and x=0.5 where antiferromagnetic (AFM) frustration is alleviated via weak charge inhomogeneity. At x=0.5, we show that the square root of 3a x 2a off-plane Na dopant order induces weak square root of 3a x 1a charge order in the Co layer. The symmetry breaking enables successive square root of 3a x 1a AFM and 2a x 2a charge- or spin-ordering transitions at low temperatures. The Fermi surface is truncated by the 2a x 2a hexagonal zone boundary into small electron and hole pockets. We study the phase structure and compare to recent experiments.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.