Abstract
The subtle interplay among electronic degrees of freedom (charge and orbital orderings), spin and lattice distortion that conspire at the Verwey transition in magnetite (Fe3O4) is still a matter of controversy. Here, we provide compelling evidence that these electronic orderings are manifested as a continuous phase transition at the temperature where a spin reorientation takes place at around 130 K, i.e., well above TV approximately 121 K. The Verwey transition seems to leave the orbital ordering unaffected whereas the charge ordering development appears to be quenched at this temperature and the temperature dependence below TV is controlled by the lattice distortions. Finally, we show that the orbital ordering does not reach true long range (disorder), and the correlation length along the c-direction is limited to 100 angstroms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.