Abstract
Charge distribution is a basic aspect of electrical transport. In this work we investigate the self-consistent charge response of normal-superconducting heterostructures. Of interest is the variation of the charge density due to voltage changes at contacts and due to changes in the electrostatic potential. We present response functions in terms of functional derivatives of the scattering matrix. We use these results to find the dynamic conductance matrix to lowest order in frequency. We illustrate similarities and differences between normal systems and heterostructures for specific examples such as a ballistic wire and a quantum point contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.