Abstract
Nanoscale rectifiers are known to have significant nanoelectronic and nanoheatronic applications. In the present work we theoretically analyze rectifying properties of a junction including a couple of quantum dots asymmetrically coupled to the electrodes. The charge and heat current rectification in the system is controlled by the dots occupation numbers and interdot Coulomb interactions. We examine the dependencies of the rectification ratio on the electron energy levels on the dots, on the intensity of electron–electron interactions, on the gate and bias voltages and on the thermal gradients applied across the system. It is shown that the considered double-dot system possesses significant potentialities as a common as well as a heat diode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.