Abstract

Crystalloluminescence, the long-lived emission of visible light during the crystallization of certain salts, was first observed over 200 years ago; however, the origin of this luminescence is still not well understood. The observations suggest that the process of crystallization may not be purely classical but also involves an essential electronic structure component. Strong electric field fluctuations may play an important role in this process by providing the necessary driving force for the observed electronic structure changes. The main objective of this work is to provide a basic understanding of the fluctuations in charge, electric potentials, and electric fields for concentrated aqueous NaCl electrolytes. Our charge analysis reveals that the water molecules in the first solvation shell of the ions serve as a sink for electron density originating on Cl(-). We find that the electric fields inside aqueous electrolytes are extremely large (up to several V/Å) and thus may alter the ground and excited electronic states in the condensed phase. Furthermore, our results show that the potential and field distributions are largely independent of concentration. We also find the field component distributions to be Gaussian for the ions and non-Gaussian for the O and H sites (computed in the lab frame of reference), however, these non-Gaussian distributions are readily modeled via an orientationally averaged nonzero mean Gaussian plus a zero mean Gaussian. These calculations and analyses provide the first steps toward understanding the magnitude and fluctuations of charge, electric potentials, and fields in aqueous electrolytes and what role these fields may play in driving charge redistribution/transfer during crystalloluminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.