Abstract

The time evolution of a charge qubit coupled electrostatically with different detectors in the forms of single, double and triple quantum dot linear systems in the T-shaped configuration between two reservoirs is theoretically considered. The correspondence between the qubit quantum dot oscillations and the detector current is studied for different values of the inter-dot tunneling amplitudes and the qubit–detector interaction strength. We have found that even for a qubit coupled with a single QD detector, the coherent beat patterns appear in the oscillations of the qubit charge. This effect is more evident for a qubit coupled with double or triple-QD detectors. The beats can be also observed in both the detector current and the detector quantum dot occupations. Moreover, in the presence of beats the qubit oscillations hold longer in time in comparison with the beats-free systems with monotonously decaying oscillations. The dependence of the qubit dynamics on different initial occupations of the detector sites (memory effect) is also analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call