Abstract

Hydrophobic modification on polycations were commonly used to improve the stability and transfection efficiency of polyplexes. However, the improved stability often means undesired release of the encapsulated siRNA, limiting the application of cationic micelles for siRNA delivery. The current strategy of preparing bioresponsive micelles based on the cleavage of sensitive linkages between polycation and hydrophobic part was far from sufficient, owing to the siRNA binding of the separated polycations from micelles leading to the incomplete release of siRNA. In this study, we propose a new strategy by the combination of micelles disassembly and separated polycations charge reversal. FPBA (3-fluoro-4-carboxyphenylboronic acid) grafted PEI 1.8 k (polyethylenimine) as the polycations of PEI-FPBA and dopamine (with diol-containing moiety) conjugated with cholesterol as the hydrophobic part (Chol-Dopa). The PFCDM micelles was assembled by PEI-FPBA and Chol-Dopa, based on the FPBA-Dopa conjugation. The prepared PFCDM showed strong siRNA loading ability and superior stability in the presence of PBS or serum. Besides, the PFCDM exhibited excellent ATP sensibility. The intracellular ATP could effectively trigger the disassembly of micelles and charge reversal of PEI-FPBA, resulting in the burst release of siRNA in the cytosol. With the property of extracellular stability and intracellular instability, PFCDM displayed good performance on in vitro and in vivo luciferase silencing on 4T1 cells. It should also be noted that the assembly of low molecular weight PEI was relatively safe to cells compared with 25 k PEI. To sum up, the ATP-fueled assembly and charge reversible micelles gave examples for polyplexes to achieve better stability and on demand cargo release at the same time and shows potential to be used for in vitro and in vivo siRNA transfection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call