Abstract
Carbon anodes for aluminium production are produced from calcined petroleum coke (CPC), recycled anode butts and coal tar pitch (CTP). The CO2 produced during anode consumption contributes to a substantial amount of the CO2 footprint of this industrial process. Charcoal from wood has been suggested to partly replace coke in anodes but high porosity, low electrical resistivity and high ash content contributes negatively to final anode properties. In this work, charcoal from Siberian larch and spruce was produced by heat treatment to 800, 1200 and 1400 ℃ and acid-washed with H2SO4. Acid-washing resulted in reduced metal impurity and the porosity decreased with increasing heat treatment. Pilot anodes were made from CTP, CPC with some additions of spruce and larch charcoal. Another set of pilot anodes were produced using a green binder. Compared to reference anodes, the CO2 reactivity of anodes containing larch was less affected compared to anodes containing spruce. The green binder was found to be highly detrimental for the anodes’ CO2 reactivity properties. Electrochemical consumption increased for anodes containing both green binder, larch and spruce compared to the reference anode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.