Abstract
BackgroundIn public health surveillance, measuring how information enters and spreads through online communities may help us understand geographical variation in decision making associated with poor health outcomes.ObjectiveOur aim was to evaluate the use of community structure and topic modeling methods as a process for characterizing the clustering of opinions about human papillomavirus (HPV) vaccines on Twitter.MethodsThe study examined Twitter posts (tweets) collected between October 2013 and October 2015 about HPV vaccines. We tested Latent Dirichlet Allocation and Dirichlet Multinomial Mixture (DMM) models for inferring topics associated with tweets, and community agglomeration (Louvain) and the encoding of random walks (Infomap) methods to detect community structure of the users from their social connections. We examined the alignment between community structure and topics using several common clustering alignment measures and introduced a statistical measure of alignment based on the concentration of specific topics within a small number of communities. Visualizations of the topics and the alignment between topics and communities are presented to support the interpretation of the results in context of public health communication and identification of communities at risk of rejecting the safety and efficacy of HPV vaccines.ResultsWe analyzed 285,417 Twitter posts (tweets) about HPV vaccines from 101,519 users connected by 4,387,524 social connections. Examining the alignment between the community structure and the topics of tweets, the results indicated that the Louvain community detection algorithm together with DMM produced consistently higher alignment values and that alignments were generally higher when the number of topics was lower. After applying the Louvain method and DMM with 30 topics and grouping semantically similar topics in a hierarchy, we characterized 163,148 (57.16%) tweets as evidence and advocacy, and 6244 (2.19%) tweets describing personal experiences. Among the 4548 users who posted experiential tweets, 3449 users (75.84%) were found in communities where the majority of tweets were about evidence and advocacy.ConclusionsThe use of community detection in concert with topic modeling appears to be a useful way to characterize Twitter communities for the purpose of opinion surveillance in public health applications. Our approach may help identify online communities at risk of being influenced by negative opinions about public health interventions such as HPV vaccines.
Highlights
The human papillomavirus (HPV) vaccine was first introduced to reduce the incidence of HPV and the majority of cervical cancers [1]
Our aim was to evaluate the combination of community structure and topic modeling methods in measuring the distribution of topics about HPV vaccines from the tweets posted by users within communities on Twitter, with the broader goal of evaluating a new process for characterizing online communities by the public health information expressed by the community members
normalized mutual information (NMI), and adjusted Rand index (ARI) scores, we found that the alignment between the community structure and the topics was higher across all measures for Dirichlet Multinomial Mixture (DMM) compared to Latent Dirichlet Allocation (LDA)
Summary
The human papillomavirus (HPV) vaccine was first introduced to reduce the incidence of HPV and the majority of cervical cancers [1]. In public health surveillance, measuring how information enters and spreads through online communities may help us understand geographical variation in decision making associated with poor health outcomes. Objective: Our aim was to evaluate the use of community structure and topic modeling methods as a process for characterizing the clustering of opinions about human papillomavirus (HPV) vaccines on Twitter. Examining the alignment between the community structure and the topics of tweets, the results indicated that the Louvain community detection algorithm together with DMM produced consistently higher alignment values and that alignments were generally higher when the number of topics was lower. Conclusions: The use of community detection in concert with topic modeling appears to be a useful way to characterize Twitter communities for the purpose of opinion surveillance in public health applications. Our approach may help identify online communities at risk of being influenced by negative opinions about public health interventions such as HPV vaccines
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.