Abstract

The nature and level of turbulent transport in the outer core of low-confinement (L-mode) discharges performed at the ASDEX Upgrade tokamak [Kallenbach et al., Nucl. Fusion 51, 094012 (2011)] are examined. Previously, it was found that for an L-mode discharge of the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] gyrokinetic simulations were unable to reproduce the experimental ion heat flux, underestimating it by almost an order of magnitude. In the present work, employing the GENE gyrokinetic turbulence code, an extensive nonlinear study is performed for L-mode discharges of ASDEX Upgrade in order to cross-check this observation. It is shown that no systematic underprediction can be found in these simulations—instead, discrepancies with respect to experimental transport levels are small enough to be resolved within the uncertainties of the experimental profiles. Moreover, it is shown that some turbulence properties resemble closely those of the underlying linear microinstabilities at least out to 90% of the minor radius, so that quasilinear transport models remain, in principle, applicable even for these parameters, provided that appropriate nonlinear saturation rules can be developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.