Abstract

The present investigation describes a combined experimental-theoretical strategy to assess the thermal resistance features of two symmetric bisphosphoramidates, tetraphenyl ethane-1,2-diylbis (phosphoramidate) 1 and tetraphenyl propane-1,3-diylbis (phosphoramidate) 5. Therefore, their structural reluctance to thermal decomposition through differential scan calorimetric (DSC) and thermogravimetric (TGA) experiments was evaluated. Then, their molecular degradation path was followed by analysing recorded data from mass spectrometry measurements performed at different temperature conditions. Their corresponding thermal degradation mechanism was then established by searching plausible transition states interconnecting the intermediaries found in our mass spectrometry records using a quantum theoretical protocol based on Coupled-Cluster calculations.Through this strategy, key intermediaries of the two bisphosphoramidates studied during their molecular degradation mechanism were identified, although compound 5 displayed the highest resistance to heat decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.