Abstract

AbstractThis paper, the second in the series, uses the entropy theory to describe the spatial variability of groundwater quality data sets. The application of the entropy theory is illustrated using the chloride observations obtained from a network of groundwater quality monitoring wells in the Gaza Strip, Palestine. The application involves calculating information measures, such as transinformation, the information transfer index and the correlation coefficient. These measures are calculated using a discrete approach, in which contingency tables are used. An exponential decay fitting approach was applied to the discrete models. The analysis shows that transinformation, as a function of distance, can be represented by the exponential decay curve. It also indicates that, for the data used in this study, the transinformation model is superior to the correlation model for characterizing the spatial variability. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.