Abstract
To assess the association of a polygenic risk score (PRS) for functional genetic variants with the risk of developing breast cancer. Summary data-based Mendelian randomization (SMR) and heterogeneity in dependent instruments (HEIDI) were used to identify breast cancer risk variants associated with gene expression and DNA methylation levels. A new SMR-based PRS was computed from the identified variants (functional PRS) and compared to an established 313-variant breast cancer PRS (GWAS PRS). The two scores were evaluated in 3560 breast cancer cases and 3383 non-cancer controls and also in a prospective study (n = 10,213) comprising 418 cases. We identified 149 variants showing pleiotropic association with breast cancer risk (eQTLHEIDI > 0.05 = 9, mQTLHEIDI > 0.05 = 165). The discriminatory ability of the functional PRS (AUCcontinuous [95% CI]: 0.540 [0.526 to 0.553]) was found to be lower than that of the GWAS PRS (AUCcontinuous [95% CI]: 0.609 [0.596 to 0.622]). Even when utilizing 457 distinct variants from both the functional and GWAS PRS, the combined discriminatory performance remained below that of the GWAS PRS (AUCcontinuous, combined [95% CI]: 0.561 [0.548 to 0.575]). A binary high/low-risk classification based on the 80th centile PRS in controls revealed a 6% increase in cases using the GWAS PRS compared to the functional PRS. The functional PRS identified an additional 12% of high-risk cases but also led to a 13% increase in high-risk classification among controls. Similar findings were observed in the SCHS prospective cohort, where the GWAS PRS outperformed the functional PRS, and the highest-performing PRS, a combined model, did not significantly improve over the GWAS PRS. While this study identified potentially functional variants associated with breast cancer risk, their inclusion did not substantially enhance the predictive accuracy of the GWAS PRS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.