Abstract

Hydrodynamic trapping allows for the confinement and manipulation of small objects in free solution, away from solid boundaries and without the need for optical or magnetic fields. In order to achieve robust trapping over long time scales, it is imperative to evaluate trap performance using different control schemes and to understand the effect of system parameters on trap stability. In this work, we investigate the performance of a hydrodynamic trap actuated by varying combinations of proportion-integral-derivative controllers. We further develop a control-based model of the trap, and we characterize trap performance for a wide range of particle Peclet numbers and response times. Overall, an increased understanding of trap performance will facilitate the design of improved controllers to enable robust trapping under variable system parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.