Abstract

BackgroundAnimals experience stress in many contexts and often successfully cope. Individuals exhibiting the proactive versus reactive stress coping styles display qualitatively different behavioral and neuroendocrine responses to stressors. The predisposition to exhibiting a particular coping style is due to genetic and environmental factors. In this study we explore the neurotranscriptomic and gene network biases that are associated with differences between zebrafish (Danio rerio) lines selected for proactive and reactive coping styles and reared in a common garden environment.ResultsUsing RNA-sequencing we quantified the basal transcriptomes from the brains of wild-derived zebrafish lines selectively bred to exhibit the proactive or reactive stress coping style. We identified 1953 genes that differed in baseline gene expression levels. Weighted gene coexpression network analyses identified one gene module associated with line differences. Together with our previous pharmacological experiment, we identified a core set of 62 genes associated with line differences. Gene ontology analyses reveal that many of these core genes are implicated in neurometabolism (e.g. organic acid biosynthetic and fatty acid metabolic processes).ConclusionsOur results show that proactive and reactive stress coping individuals display distinct basal neurotranscriptomic states. Differences in baseline expression of select genes or regulation of specific gene modules are linked to the magnitude of the behavioral response and the display of a coping style, respectively. Our results expand the molecular mechanisms of stress coping from one focused on the neurotransmitter systems to a more complex system that involves an organism’s capability to handle neurometabolic loads and allows for comparisons with other animal taxa to uncover potential conserved mechanisms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1626-x) contains supplementary material, which is available to authorized users.

Highlights

  • Animals experience stress in many contexts and often successfully cope

  • To narrow down the list to a core set of genes associated with coping style, we focused on behavioral phenotype and genes which were differentially expressed in this study (Additional file 1: Table S1) and our previous study assessing transcriptome effects of the anxiolytic drug fluoxetine in our HSB line fish [24]

  • Through comparing data generated in the current as well as our previous pharmacological study, we identified a core set of 115 genes - whose functions are associated with fatty acid and metabolic and organic acid biosynthetic processes - that contribute to line level differences in stress coping styles

Read more

Summary

Introduction

Animals experience stress in many contexts and often successfully cope. Individuals exhibiting the proactive versus reactive stress coping styles display qualitatively different behavioral and neuroendocrine responses to stressors. The predisposition to exhibiting a particular coping style is due to genetic and environmental factors. In this study we explore the neurotranscriptomic and gene network biases that are associated with differences between zebrafish (Danio rerio) lines selected for proactive and reactive coping styles and reared in a common garden environment. Animals experience stress in a variety of naturalistic and artificial contexts and often successfully cope. An animal or human’s ability to cope with stress is influenced by genetic and environmental factors. In this study we characterize the neurogenomic mechanisms associated with differences in stress coping using wildderived zebrafish lines selectively bred to exhibit variation in coping with stress

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.