Abstract

We characterize the influence of different intersection mixing rules for particle tracking simulations on transport properties through three-dimensional discrete fracture networks. It is too computationally burdensome to explicitly resolve all fluid dynamics within a large three-dimensional fracture network. In discrete fracture network (DFN) models, mass transport at fracture intersections is modeled as a subgrid scale process based on a local Péclet number. The two most common mass transfer mixing rules are (1) complete mixing, where diffusion dominates mass transfer, and (2) streamline routing, where mass follows pathlines through an intersection. Although it is accepted that mixing rules impact local mass transfer through single intersections, the effect of the mixing rule on transport at the fracture network scale is still unresolved. Through the use of explicit particle tracking simulations, we study transport through a quasi-two-dimensional lattice network and a three-dimensional network whose fracture radii follow a truncated power-law distribution. We find that the impact of the mixing rule is a function of the initial particle injection condition, the heterogeneity of the velocity field, and the geometry of the network. Furthermore, our particle tracking simulations show that the mixing rule can particularly impact concentrations on secondary flow pathways. We relate these local differences in concentration to reactive transport and show that streamline routing increases the average mixing rate in DFN simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.