Abstract

Extreme complimentary metal-oxide-semiconductor (CMOS) technology scaling is causing significant concerns in the reliability of computer systems. Intermittent hardware errors are non-deterministic bursts of errors that occur in the same physical location. Recent studies have found that 40% of the processor failures in real-world machines are due to intermittent hardware errors. A study of the effects of intermittent faults on programs is a critical step in building fault-tolerance techniques of reasonable accuracy and cost. In this work, we characterize the impact of intermittent hardware faults in programs using fault-injection campaigns in a microarchitectural processor simulator. We find that 80% of the non-benign intermittent hardware errors activate a hardware trap in the processor, and the remaining 20% cause silent data corruptions. We have also investigated the possibility of using the program state at failure time in software-based diagnosis techniques, and found that much of the erroneous data are intact and can be used to identify the source of the error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.