Abstract

AbstractAnalysis of the Sierra Nevada (USA) snowpack using a new spatially distributed snow reanalysis data set, in combination with longer term in situ data, indicates that water year 2015 was a truly extreme (dry) year. The range‐wide peak snow volume was characterized by a return period of over 600 years (95% confidence interval between 100 and 4400 years) having a strong elevational gradient with a return period at lower elevations over an order of magnitude larger than those at higher elevations. The 2015 conditions, occurring on top of three previous drought years, led to an accumulated (multiyear) snowpack deficit of ~ −22 km3, the highest over the 65 years analyzed. Early estimates based on 1 April snow course data indicate that the snowpack drought deficit will not be overcome in 2016, despite historically strong El Niño conditions. Results based on a probabilistic Monte Carlo simulation show that recovery from the snowpack drought will likely take about 4 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.