Abstract

ABSTRACTWe explore the magneto-rotational instability (MRI)-driven dynamo in a radiatively inefficient accretion flow (RIAF) using the mean field dynamo paradigm. Using singular value decomposition (SVD) we obtain the least-squares fitting dynamo coefficients α and γ by comparing the time series of the turbulent electromotive force and the mean magnetic field. Our study is the first one to show the poloidal distribution of these dynamo coefficients in global accretion flow simulations. Surprisingly, we obtain a high value of the turbulent pumping coefficient γ, which transports the mean magnetic flux radially outwards. This would have implications for the launching of magnetized jets that are produced efficiently in presence a large-scale poloidal magnetic field close to the compact object. We present a scenario of a truncated disc beyond the RIAF where a large-scale dynamo-generated poloidal magnetic field can aid jet launching close to the black hole. Magnitude of all the calculated coefficients decreases with radius. Meridional variations of αϕϕ, responsible for toroidal to poloidal field conversion, is very similar to that found in shearing box simulations using the ‘test field’ (TF) method. By estimating the relative importance of α-effect and shear, we conclude that the MRI-driven large-scale dynamo, which operates at high latitudes beyond a disc scale height, is essentially of the α − Ω type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.