Abstract

Much effort has been put into improving the temporal stability of electric field-induced chromophore alignment in molecularly doped or functionalized polymers for second order nonlinear optical device applications. Characterization of the alignment decay in electric field-poled films is complicated by charge injection during poling. In order to optimize poling schemes and to accurately determine the orientational mobility of the chromophores it is necessary to develop methods to measure the spatial extent and time-dependence of any residual fields in the polymer films. Such Measurements will also be important for the development of polymer-based electro-optic devices, and in fact for any guided wave application in these materials since the residual field may induce a spatial dependence in the refractive index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call