Abstract

Proteolytic targeting chimeras (PROTACs), as an emerging type of drug, function by proximity-based modalities that narrow the distance between a target protein and the E3 ubiquitin ligase to facilitate the ubiquitination labeling of the target protein for degradation. Although it is evidenced that the cooperativity of the PROTAC ternary interaction is one of the key factors affecting the degradation rate of a target protein, PROTAC design utilizing this indicator is still challenging because of the complicated/flexible interactions in a target-PROTAC-E3 ternary system. Therefore, developing reliable and practicable computational methods is of great interest for PROTAC design. Hence, in this study, we investigate the feasibility of using the end-point binding free energy calculation method, represented by molecular mechanics/Poisson-Boltzmann (generalized-Born) surface area (MM/PB(GB)SA), for characterizing cooperativity (including the stabilization and hook effects) of the PROTAC systems. The result shows that MM/GBSA is a good predictor in characterizing these effects under a relatively long molecular dynamics adjustment (50-100 ns) and low dielectric constant (εin = 1), with the Pearson correlation coefficient (rp) > 0.5 and 0.6 for the stabilization and hook effect, respectively. This study provides a feasible strategy for characterizing the cooperativity of the PROTAC systems, facilitating the rational design of PROTAC molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.