Abstract

The postmerger gravitational wave (GW) emission from a binary neutron star merger is expected to provide exciting new constraints on the dense-matter equation of state (EoS). Such constraints rely, by and large, on the existence of quasi-universal relations, which relate the peak frequencies of the postmerger GW spectrum to properties of the neutron star structure in a model-independent way. In this work, we report on violations of existing quasi-universal relations between the peak spectral frequency, f 2, and the stellar radius, for EoS models with backwards-bending slopes in their mass–radius relations (such that the radius increases at high masses). The violations are extreme, with variations in f 2 of up to ∼600 Hz between EoSs that predict the same radius for a 1.4 M ⊙ neutron star but that have significantly different radii at higher masses. Quasi-universality can be restored by adding in a second parameter to the fitting formulae that depends on the slope of the mass–radius curve. We further find strong evidence that quasi-universality is better maintained for the radii of very massive stars (with masses 2 M ⊙). Both statements imply that f 2 is mainly sensitive to the high-density EoS. Combined with observations of the binary neutron star inspiral, these generalized quasi-universal relations can be used to simultaneously infer the characteristic radius and slope of the neutron star mass–radius relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.