Abstract

Despite years of study, branch mispredictions remain as a significant performance impediment in pipelined superscalar processors. In general, the branch misprediction penalty can be substantially larger than the frontend pipeline length (which is often equated with the misprediction penalty). We identify and quantify five contributors to the branch misprediction penalty: (i) the frontend pipeline length, (ii) the number of instructions since the last miss event (branch misprediction, I-cache miss, long D-cache miss)-this is related to the burstiness of miss events, (iii) the inherent ILP of the program, (iv) the functional unit latencies, and (v) the number of short (LI) D-cache misses. The characterizations done in this paper are driven by 'interval analysis', an analytical approach that models superscalar processor performance as a sequence of inter-miss intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.