Abstract

The purpose of the study was to characterize the Balance-Dexterity Task as a means to investigate a concurrent bipedal lower-extremity task and trunk control during dynamic balance. The task combines aspects of single-limb balance and the lower-extremity dexterity test by asking participants to stand on one limb while compressing an unstable spring with the contralateral limb to an individualized target force. Nineteen non-disabled participants completed the study, and performance measures for the demands of each limb – balance and dexterous force control – as well as kinematic and electromyographic measures of trunk control were collected. Given five practice trials, participants achieved compression forces ranging from 100 to 139 N (mean 121.2 ± 12.3 N), representing 14.4–23.0% of body weight (mean 18.7 ± 2.4%), which were then presented as target forces during test trials. Dexterous force control coefficient of variation and average magnitude of the center of pressure (COP) resultant velocity were associated such that greater variability in force control was accompanied by greater COP velocity (R = 0.598, p = 0.007). Trunk coupling, quantified as the coefficient of determination (R2) of a frontal plane thorax and pelvis angle-angle plot, varied independently of any measure of balance or dexterous force control. The Balance-Dexterity Task is a continuous, dynamic balance task where bipedal coordination and trunk coupling can be concurrently observed and studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.