Abstract

We quantify the adsorption and desorption of a monoclonal immunoglobulin-G antibody, rituxamab (RmAb), on silica capillary surfaces using electrospray-differential mobility analysis (ES-DMA). We first develop a theory to calculate coverages and desorption rate constants from the ES-DMA data for proteins adsorbing on glass capillaries used to electrospray protein solutions. This model is then used to study the adsorption of RmAb on a bare silica capillary surface. A concentration-independent coverage of ≈4.0 mg/m(2) is found for RmAb concentrations ranging from 0.01 to 0.1 mg/mL. A study of RmAb adsorption to bare silica as a function of pH shows maximum adsorption at its isoelectric point (pI of pH 8.5) consistent with literature. The desorption rate constants are determined to be ≈10(-5) s(-1), consistent with previously reported values, thus suggesting that shear forces in the capillary may not have a considerable effect on desorption. We anticipate that this study will allow ES-DMA to be used as a "label-free" tool to study adsorption of oligomeric and multicomponent protein systems onto fused silica as well as other surface modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.