Abstract
Auditory Brainstem Responses (ABRs) are a reliably robust measure of auditory thresholds in the mammalian hearing system and can be used to determine deficits in the auditory periphery. However, because these measures are limited to the lower stages of the auditory pathway, they are insensitive to changes or deficits that occur in the thalamic and cortical regions. Cortical Auditory Evoked Potentials (CAEPs), as longer latency responses, capture information from these regions. However they are less frequently used as a diagnostic tool, particularly in rodent models, due to their inherent variability and subsequent difficult interpretation.The purpose of this study was to develop a consistent measure of subcutaneous CAEPs to auditory stimuli in mice and to determine their origin. To this end, we investigated the effect on the CAEPs recorded in response to different stimuli (noise, click, and tone (16 kHz) bursts), stimulus presentation rates (2/s, 6/s, 10/s) and electrode placements. Recordings were examined for robust CAEP components to determine the optimal experimental paradigm. We argue that CAEPs can measure robust and replicable cortical responses. Furthermore, by deactivating the auditory cortex with lidocaine we demonstrated that the contralateral cortex is the main contributor to the CAEP. Thus CAEP measurements could prove to be of value diagnostically in future for deficits in higher auditory areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Hearing Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.