Abstract
Let S be a nonempty set in a real topological linear space L. p ∈ S is a point of maximal visibility of S if and only if it admits a neighbourhood N in L such that Sq \(\subseteq\) Sp for every point q ∈ S ∩ N, where Sx = { s ∈ S : x is visible from s via S }. For S being either open and connected or the closure of its connected interior, it is shown that the kernel of S is the set of all maximal visibility points of S. Planar examples reveal that the topological assumptions on S are necessary. This substantially strengthens a recent result of Toranzos and Forte Cunto.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.