Abstract

The motility patterns in the gastrointestinal tract are regulated, in part, by bioelectrical events known as slow waves (SWs). Understanding temporal and spatial features of gastric SWs can help reveal the underlying causes of functional motility disorders. This study investigated the ability of source localization techniques to characterize the spatial signatures of SW activity using simulated and experimental magnetogastrography data. Two SW propagation patterns (antegrade and retrograde) with two rhythms (normogastric and bradygastric) were used to simulate magnetic fields using 4 anatomically realistic stomach and torso geometries. Source localization was performed utilizing the equivalent current dipole (ECD) and the equivalent magnetic dipole (EMD) models. In the normogastric simulations when compared with the SW activity, the EMD model was capable of identifying the SW propagation in the lateral, antero-posterior, and supero-inferior axes with the median correlation coefficients of 0.66, 0.53, and 0.83, respectively, whereas the ECD model produced lower correlation scores (median: 0.52, 0.44, and 0.44). Moreover, the EMD model resulted in distinct and opposite spatial signatures for the antegrade and retrograde propagation. Similarly, when experimental data was used, the EMD model revealed antegrade-like signatures where the propagation was mostly towards the third quadrant in the supero-inferior (preprandial: 49%, postprandial: 35%) and antero-posterior (preprandial: 49%, postprandial: 50%) axes. The EMD model was able to identify and classify the spatial signatures of SW activities, which can help to inform the interpretation of non-invasive recordings of gastric SWs as a biomarker of functional motility disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call