Abstract

Natural habitats are being impacted by human pressures at an alarming rate. Monitoring these ecosystem-level changes often requires labor-intensive surveys that are unable to detect rapid or unanticipated environmental changes. Here we have developed a generalizable, data-driven solution to this challenge using eco-acoustic data. We exploited a convolutional neural network to embed soundscapes from a variety of ecosystems into a common acoustic space. In both supervised and unsupervised modes, this allowed us to accurately quantify variation in habitat quality across space and in biodiversity through time. On the scale of seconds, we learned a typical soundscape model that allowed automatic identification of anomalous sounds in playback experiments, providing a potential route for real-time automated detection of irregular environmental behavior including illegal logging and hunting. Our highly generalizable approach, and the common set of features, will enable scientists to unlock previously hidden insights from acoustic data and offers promise as a backbone technology for global collaborative autonomous ecosystem monitoring efforts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.