Abstract

This study presents a preliminary development of a direct back analysis procedure by the meshless local Petrov-Galerkin (MLPG) method and its application to characterize soil properties using in-situ test results. As compared to a direct back analysis based on the finite element method (FEM), it is intended to show that doing a direct back analysis by the MLPG method may reduce the computation costs or treat with the non-homogeneity of characterized soil properties more easily. Taking a two-dimensional (2D) solute transport problem as an illustration, an MLPG1 model of such a problem is derived to predict the solute concentration with trial coefficients of dispersion. To account for the non-homogeneity of these coefficients, variation of them is described by the moving least-squares interpolation. The Akaike information criterion is then introduced to find those coefficients of dispersion with which errors between predicted and measured data are minimized. A benchmark problem is studied to test the precision of numerical results provided by the proposed MLPG1 model. Another example illustrates the experiences of doing an MLPG-based direct back analysis. Comparison of MLPG-based and FEM-based direct back analyses is taken.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.