Abstract
For a given numeration system U, a set X of integers is said to be U-star-free if the language of the normalized U-representations of the elements in X is star-free. Adapting a result of McNaughton and Papert, we give a first-order logical characterization of these sets for various numeration systems including integer base systems and the Fibonacci system. For k-ary systems, the problem of the base dependence of this property is also studied. Finally, the case of k-adic systems is developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.