Abstract

AbstractReconstructions of the El Niño–Southern Oscillation (ENSO) are often created using the oxygen isotopic ratio in tropical coral skeletons (δ18O). However, coral δ18O can be difficult to interpret quantitatively, as it reflects changes in both temperature and the δ18O value of seawater. Small‐scale (10–100 km) processes affecting local temperature and seawater δ18O are also poorly quantified and contribute an unknown amount to intercoral δ18O offsets. A new version of the Regional Ocean Modeling System capable of directly simulating seawater δ18O (isoROMS) is therefore presented to address these issues. The model is used to simulate δ18O variations over the 1979–2009 period throughout the Pacific at coarse (O(50 km)) resolution, in addition to 10 km downscaling experiments covering the central equatorial Pacific Line Islands, a preferred site for paleo‐ENSO reconstruction from corals. A major impact of downscaling at the Line Islands is the ability to resolve fronts associated with tropical instability waves (TIWs), which generate large excursions in both temperature and seawater δ18O at Palmyra Atoll (5.9°N, 162.1°W). TIW‐related sea surface temperature gradients are smaller at neighboring Christmas Island (1.9°N, 157.5°W), but the interaction of mesoscale features with the steep island topography nonetheless generates cross‐island temperature differences of up to 1°C. These nonlinear processes alter the slope of the salinity:seawater δ18O relationship at Palmyra and Christmas, as well as affect the relation between coral δ18O and indices of ENSO variability. Consideration of the full physical oceanographic context of reef environments is therefore crucial for improving δ18O‐based ENSO reconstructions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call