Abstract

We describe a method for analyzing reflections within or near semiconductor lasers and more complicated integrated sources. Through Fourier transformation of an optical spectrum from the wavevector to the length domain, reflections are analyzed for strength, round-trip path length, and current or voltage dependence. Identification of reflections from within semiconductor lasers, integrated electro-absorption modulated lasers, and from coupling optics is presented. Spatial resolution in InP of /spl sim/5 /spl mu/m with over two orders of magnitude in dynamic range is demonstrated. Inverse transformation of a spatially resolved feature in a transformed reflection spectrum provides an optical spectrum due to that individual feature of sufficient resolution to study wavelength dependence, for example, of coatings and gratings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.