Abstract

Residual force enhancement (RFE), an increase in isometric force after active stretching of a muscle compared with the purely isometric force at the corresponding length, has been consistently observed throughout the structural hierarchy of skeletal muscle. Similar to RFE, passive force enhancement (PFE) is also observable in skeletal muscle and is defined as an increase in passive force when a muscle is deactivated after it has been actively stretched compared with the passive force following deactivation of a purely isometric contraction. These history-dependent properties have been investigated abundantly in skeletal muscle, but their presence in cardiac muscle remains unresolved and controversial. The purpose of this study was to investigate whether RFE and PFE exist in cardiac myofibrils and whether the magnitudes of RFE and PFE increase with increasing stretch magnitudes. Cardiac myofibrils were prepared from the left ventricles of New Zealand White rabbits, and the history-dependent properties were tested at three different final average sarcomere lengths (n = 8 for each), 1.8, 2, and 2.2 μm, while the stretch magnitude was kept at 0.2 μm/sarcomere. The same experiment was repeated with a final average sarcomere length of 2.2 μm and a stretching magnitude of 0.4 μm/sarcomere (n = 8). All 32 cardiac myofibrils exhibited increased forces after active stretching compared with the corresponding purely isometric reference conditions (p < 0.05). Furthermore, the magnitude of RFE was greater when myofibrils were stretched by 0.4 compared with 0.2 μm/sarcomere (p < 0.05). We conclude that, like in skeletal muscle, RFE and PFE are properties of cardiac myofibrils and are dependent on stretch magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call