Abstract

BackgroundQuantifying gene expression is a critical aspect of applied genomics research across all organisms, and real-time PCR has emerged as a powerful tool for this purpose. However, selecting appropriate internal control genes for data normalization presents specific challenges. This study aimed to identify suitable reference genes for gene expression analysis under various conditions, encompassing salinity, low and high-temperature stresses, and different elicitor treatments. These treatments included titanium dioxide, cold plasma, 24-epibrassinolide, and melatonin, resulting in a total of 13 unique treatments and 148 treatment combinations applied to fenugreek plants.ResultsAs per the analysis performed with the BestKeeper tool, EEF-1α, and GAPDH were recognized as the most stable reference genes under the majority of conditions. Furthermore, the GeNorm and NormFinder tools identified β-tubulin and EEF-1α as the most stable reference genes. The findings of this research demonstrated that, although the stability of three reference genes expression was acceptable in almost all evaluated treatments, fluctuations in their expression were observed under the treatments of cold stress with TiO2 NPs application, cold plasma application with salinity stress, and cold plasma application with high-temperature stress compared to others. Simultaneously, the GeNorm analysis results demonstrated that in the mentioned treatments, relying on only one reference gene is inadequate. To corroborate the results, we examined the expression profile of the SSR gene, a pivotal gene in diosgenin biosynthesis, under all investigated treatments and treatment combinations. The outcomes suggested that employing stable reference genes yielded highly consistent results.ConclusionsThe varying expression patterns of the target genes emphasize the crucial need for precise optimization of experimental conditions and selecting stable reference genes to achieve accurate results in gene expression studies utilizing real-time PCR. These findings offer valuable insights into the selection of appropriate reference genes for gene expression analysis under diverse conditions using real-time PCR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.