Abstract

Abstract Three 26650 LiFePO4 (LFP) cells are cycled using a 40 A pulsed charge/discharge profile to study their performance in high rate pulsed applications. This profile is used to simulate naval pulsed power loads planned for deployment aboard future vessels. The LFP cells studied experienced an exponential drop in their usable high-rate recharge capacity within sixty cycles due to a rapid rise in their internal resistance. Differential capacitance shows that the voltage window for charge storage is pushed outside of the recommended voltage cutoff limits. Investigation into the state of health of the electrodes shows minimal loss of active material from the cathode to side reactions. Post-mortem examination of the anodic surface films reveals a large increase in the concentration of reduced salt compounds indicating that the pulsed profile creates highly favorable conditions for LiPF6 salt to break down into LiF. This film slows the ionic movement at the interface, affecting transfer kinetics, resulting in charge buildup in the bulk anode without successful energy storage. The results indicate that the use of these cells as a power supply for high pulsed power loads is hindered because of ionically resistant film development and not by an increasing rate of active material loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call