Abstract

Mechanical properties of metallic-nanowire self-oscillations are investigated through a coherent-state analysis. We focus on elucidating the time behavior of quantum energy in such oscillations, in addition to the analysis of fluctuations, evolution of eigenstates, and oscillatory trajectories. The quantum energy varies somewhat randomly at first, but, at a later time, it undergoes a stable periodical oscillation; the mean energy in the stabilized motion is large when the frequency of the driving force is resonated with that of the intrinsic oscillation of the nanowire. We confirmed that when the oscillatory amplitude is sufficiently low, the quantum energy is quite different from the classical one due to zero-point energy which appears in the quantum regime. Because the power in such an oscillation is typically ultra low, quantum effects in the nanowire oscillations are non-negligible. Detailed analysis for the evolution of the probability densities and their relation with the oscillation trajectories of the nanowire are also carried out. Characterizing quantum effects in the actual oscillatory motions and clarifying their difference from the classical ones are important in understanding nanowire self-oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.