Abstract

Fluorescence microscopy assays enable the investigation of endogenous biomolecular condensates directly in their cellular context. With appropriate experimental designs, these assays yield quantitative information on condensate material properties and inform on biophysical mechanisms of condensate formation. Single-molecule super-resolution and tracking experiments grant access to the smallest condensates and early condensation stages not resolved by conventional imaging approaches. Here, we discuss considerations for using single-molecule assays to extract quantitative information about biomolecular condensates directly in their cellular context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.