Abstract
A set of 16 priority polycyclic aromatic hydrocarbons (PAH) associated with particulate matter (PM), emitted by a diesel engine fueled with petroleum diesel and a 15%-vol. palm oil methyl ester blend with diesel (B15), were determined. PM was filtered from a sample of the exhaust gas with the engine running at a steady speed and under no load. PAH were extracted from the filters using the Soxhlet technique, with dichloromethane as solvent. The extracts were then analyzed by gas chromatography using a flame ionization detector (FID). No significant difference was found between PM mass collected when fueled with diesel and B15. Ten of the 16 PAH concentrations were not reduced by adding biodiesel: Benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene and phenanthrene. The acenaphthene, acenaphthylene and anthracene concentrations were 45%–80% higher when using diesel, whereas those for benzo(k)fluoranthene, benzo(g,h,i)perylene and pyrene were 30%–72% higher when using the B15 blend. Even though the 16 priority-PAH cumulative concentration increased when using the B15 blend, the total toxic equivalent (TEQ) concentration was not different for both fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.