Abstract
We applied the bag of visual words model for visual texture to a dataset of realistic powder micrograph images drawn from eight closely related particle size distributions. We found that image texture based powder classification performance saturates at 89±3% with 640 training images (80 images per class). This classification accuracy is comparable to classification using conventional segmentation-based particle size analysis. Furthermore, we found that particle size distributions obtained via watershed segmentation are generally not statistically equivalent to the ground truth particle size distributions, as quantified by the two-sample Kolmogorov-Smirnov test for distribution equivalence. We expect image texture classification methods to outperform particle size analysis for more challenging real-world powder classification tasks by capturing additional information about particle morphology and surface textures, which add complexity to the image segmentation task inherent in particle size distribution estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.