Abstract
Polyurethane foam (PUF) is widely used in indoor consumer products. Despite strong potential interactions with volatile organic compounds (VOCs), the effect of PUF on indoor concentrations of VOCs has not been examined. This study determines the behavior of PUF as a potential sink for or source of VOCs in indoor air. A flexible polyether-type foam and eight aromatic VOCs ranging in molecular weight from naphthalene to benzene were studied. Rapid determinations of PUF-air partition coefficient (\IK\N) and PUF-phase diffusion coefficient (\ID\N) were achieved using a dynamic microbalance procedure. A diffusion model was applied to interpret the experimental data. The PUF sample was assumed to conform to semi-infinite cylindrical geometry with solid-phase diffusion being the rate limiting step. The results indicate that sorption of VOCs by PUF is fully reversible. For the VOCs studied, \IK\N can be correlated with vapor pressure and \ID\N with molecular free surface area. Humidity appears to reduce the extent of sorption and slow the sorption kinetics. These findings should facilitate the prediction of the source/sink behavior of PUF and the related impact on VOC concentrations in the indoor environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.