Abstract

Mesenchymal stromal cells (MSCs) continue to be proposed for clinical investigation to treat myriad diseases given their purported potential to stimulate endogenous regenerative processes, such as angiogenesis. However, MSC functional heterogeneity has hindered clinical success and still poses a substantial manufacturing challenge from a product quality control perspective. Here, a quantitative bioassay based on an enhanced-throughput is described, microphysiological system (MPS) to measure the specific bioactivity of MSCs to stimulate angiogenesis as a potential measure of MSC potency. Using this novel bioassay, MSCs derived from multiple donors at different passages are co-cultured with human umbilical vein endothelial cells and exhibit significant heterogeneity in angiogenic potency between donors and cell passage. Depending on donor source and cellular passage number, MSCs varied in their ability to stimulate tip cell dominant or stalk cell dominant phenotypes in angiogenic sprout morphology which correlated with expression levels of hepatocyte growth factor (HGF). These findings suggest that MSC angiogenic bioactivity may be considered as a possible potency attribute in MSC quality control strategies. Development of a reliable and functionally relevant potency assay for measuring clinically relevant potency attributes of MSCs will help to improve consistency in quality and thereby, accelerate clinical development of these cell-based products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.