Abstract
A new α-agarase AgaE belonging to glycoside hydrolase (GH) family 96 was identified and cloned from marine bacterium Thalassomonas sp. LD5. AgaE consists of 926 amino acids with a theoretical molecular mass of 97 kDa. The optimum temperature and pH for recombinant AgaE were 35 °C and 7.0, respectively. In contrast to known α-agarases, the activity of AgaE does not depend on Ca2+, but on Na+. Thin-layer chromatography and 13C NMR analysis revealed that AgaE endohydrolytic of agarose to produce agarotetraose and agarohexaose as the final main products. Extensive site-directed mutagenesis studies on the conserved carboxylic amino acids of GH96 revealed two essential amino acids for AgaE, D779 and D781. Replacing D779 with G779 leads to complete inactivation of the enzyme, while D781G results in 70% loss of activity. Later studies showed that site D781 involved in the binding of Na+, and its mutation raised the optimal concentration of Na+ 4 times higher than that of the wild type. However, attempts to rescue the mutant's activities with sodium azide were failed. Kinetic parameters comparison of AgaE, AgaD, another α-agarase from LD5, and their mutants revealed that the former aspartic acid plays critical role in the catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.