Abstract

Methods that use n-hexane (n-hexane permporosimetry and n-hexane/2,2-dimethylybutane (DMB) separation) are shown to not be effective for characterizing MFI zeolite membranes because n-hexane adsorption swells MFI crystals and shrinks the size of nonzeolitic pores. Measurements on a membrane in which 30% of its helium flux at 300 K was through nonzeolitic pores demonstrate that benzene permporosimetry and isooctane vapor permeation as a function of feed activity provide better characterizations. Isooctane condensed in nonzeolitic pores at high activities, and this was used to estimate the sizes of those pores. The average nonzeolitic pore size in this membrane decreased from approximately 3.0 to 1.5 nm as the temperature increased from 300 to 348 K, apparently due to thermal expansion of MFI crystals. Benzene permporosimetry yielded dramatically different results from n-hexane permporosimetry because benzene does not swell the MFI crystals significantly. Single-component pervaporation fluxes as a function ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call