Abstract
Athermal elastic moduli of soft-sphere packings are known to exhibit universal scaling properties near the unjamming point, most notably the vanishing of the shear-to-bulk moduli ratio G/B upon decompression. Interestingly, the smallness of G/B stems from the large nonaffinity of deformation-induced displacements under shear strains, compared to insignificant nonaffinity of displacements under compressive strains. In this work, we show using numerical simulations that the relative weights of the affine and nonaffine contributions to the bulk modulus, and their dependence on the proximity to the unjamming point, can differ qualitatively between different models that feature the same generic unjamming phenomenology. In canonical models of unjamming, we observe that the ratio of the nonaffine to total bulk moduli B_{na}/B approaches a constant upon decompression, while in other, less well-studied models, it vanishes. We show that the vanishing of B_{na}/B in noncanonical models stems from the emergence of an invariance of net (zero) forces on the constituent particles to compressive strains at the onset of unjamming. We provide a theoretical scaling analysis that fully explains our numerical observations, and allows us to predict the scaling behavior of B_{na}/B upon unjamming, given the functional form of the pairwise interaction potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.