Abstract

Acinetobacter baumannii is recognized as a challenging Gram-negative pathogen due to its widespread resistance to antibiotics. It is crucial to comprehend the mechanisms behind this resistance to design new and effective therapeutic options. Unfortunately, our ability to investigate these mechanisms in A. baumannii is hindered by the paucity of suitable genetic manipulation tools. Here, we describe methods for utilizing a chromosomal mini-Tn7-based system to achieve single-copy gene expression in an A. baumannii strain that lacks functional RND-type efflux mechanisms. Single-copy insertion and inducible efflux pump expression are quite advantageous, as the presence of RND efflux operons on high-copy number plasmids is often poorly tolerated by bacterial cells. Moreover, incorporating recombinant mini-Tn7 expression vectors into the chromosome of a surrogate A. baumannii host with increased efflux sensitivity helps circumvent interference from other efflux pumps. This system is valuable not only for investigating uncharacterized bacterial efflux pumps but also for assessing the effectiveness of potential inhibitors targeting these pumps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.