Abstract

A salt-freshwater transition zone due to seawater intrusion to groundwater promotes changes in microbial diversity and community composition in a coastal aquifer. The main purpose of this study is to explore the effect of seawater intrusion on the groundwater quality in a salt-freshwater transition zone and identify the microbial fingerprints of seawater intrusion. The changes in microbial community diversity response to the seawater intrusion were characterized by comparing the community structures of the microbes in fresh groundwater, seawater, and salty groundwater from various monitoring wells at different depths using the high throughput 16S rDNA gene sequencing. Results show that seawater had the lowest taxon richness and evenness, and the irrigation water had the highest richness and evenness. Statistical analysis showed that DO%, ORP, and Cl− affected microbial distribution in the groundwater; while DO% was a main environmental factor influencing microbial community diversity. The analysis of microbial community structures indicates that the order Oceanospirillales and the family Alteromonadaceae could be used as indicators of seawater intrusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.